If you have two or more columns of data and you want to merge these columns into one column then using the Google Sheets `QUERY`

formula may be one way you can achieve this.

Here’s an in depth explanation of how to achieve this:

## Step 1 – Prep your data

If you data doesn’t contain any spaces then you’re good to go, if though your data *does* contain spaces then you will need to define a character at the end of *each* cell to get this to work.

## Step 2 – Understanding the QUERY Function

Let’s have two simple data sets, one which **does not** contain spaces in its data set, and another which does:

With both data sets we have highlighted in grey the returned values from the `QUERY`

function.

### QUERY parameters

The `QUERY`

function is a powerful formula in Google Sheets helps to treat data contained in tabular format like a database table which we can perform basic `SQL`

queries on.

This function contains three parameters:

- The data set.
- The
`SELECT`

command. - The number of headers in your data set.

It’s the third parameter of the `QUERY`

function that will help us in being able to concatenate the data within each column.

At the moment, from above, we have set the third parameter to `0`

which means our data set does **not** return any headers.

**But what if I want to define the first row as being the header?**

Then we would simply change this third parameter in the `QUERY`

function to `1`

– representing the first row. When we perform this change to our formula we see no change to our data, however, the returned values have now defined that first row as a header area.

### QUERY Header Parameter

What if we were to increase the number represented in our `QUERY`

function? How is the result set returned if we define the `header`

parameter as `2`

?

Here’s how it looks for our data sets:

Did you notice what the `QUERY`

function does when we define more than one header row?

It concatenates the header rows and inserts a space between each appended element. Therefore, the first row containing `A`

and the second row containing `B`

produce the header `A B`

.

(Can you foresee the issues we’re going to run into when we merge our columnar data which contains spaces already?)

So if we wanted to get all the elements within our column wrapped into one row we would just need to change that third parameter to the maximum height of our columns. We could use the `ROWS()`

function to capture this number:

## Step 3 – JOIN columns

As the columns have been merged into one header row, we now want to stitch these column headers together.

This is achieved by wrapping the `QUERY`

function in a `JOIN`

function, like so:

Notice here we used the first parameter of the `JOIN`

function as a space to mimic the behaviour of what the `QUERY`

data did to our data too.

Do be aware the `JOIN`

function does have a limit of `50,000`

characters. If you have a lot of data to concatenate you might want to break it up to smaller data sets.

### What if our data contains spaces?

As you can see this strategy isn’t going to work too well as our result now contains too many spaces between data cells, and looks as follows:

Therefore, we’re going to need to improvise on the spaces in our current data set.

What we’re going to do is to modify our original data by substituting spaces for an oblique character that isn’t used in our data. For example, my current data set with names isn’t likely to have a tilde character `~`

.

Therefore, what we want to be able to do is to change our imported data set in the `QUERY`

function so that we are operating on data that doesn’t contain any spaces – we want to be able to reserve these spaces for the explicit purpose of being able to split our data back into cells again.

One such way I achieved this was by changing our original formula:

`QUERY(A1:B3,,ROWS(A:A))`

To this:

`QUERY(ARRAYFORMULA(SUBSTITUTE(A1:B3," ","~")),,ROWS(A:A))`

What has happened with our first `QUERY`

parameter?

Instead of referencing the original data set we modify the data set to substitute spaces for our oblique tilde `~`

character.

The `ARRAYFORMULA`

provides us the functionality of being able to operate on *each* cell within the range, and all we want to do is apply the `SUBSTITUTE`

formula to each cell – if it has a space character replace it with the tilde character.

The result of our change should produce something like this:

We’ve now achieved our purpose of reserving the space characters for another specific purpose which we’ll see next.

## Step 4 – Transform back to one column

Our data is in one cell, split by the space character.

To stretch this back out into one single column all we need to do is `SPLIT`

the data by the special space character and then `TRANSPOSE`

it to leave the data as a column, otherwise it will remain in row fashion if we don’t.

Here’s what happens to our first data set when we `SPLIT`

first:

`=SPLIT(JOIN(" ", QUERY(A1:B4,,ROWS(A:A)))," ")`

Then our concluding formula for the first data set:

`=transpose(split(join(" ", query(A1:B4,,rows(A:A)))," "))`

### What about our data set with spaces?

A little more work is going to be required with our original data set which contains spaces.

If we copy the above formulas into our working “space” formula here’s the result:

`=TRANSPOSE(SPLIT(JOIN(" ",QUERY(ARRAYFORMULA(SUBSITUTE(A1:B3," ","~")),,ROWS(A:A)))," "))`

As you can see we need to remove at the end each of those tilde characters.

How do you think we could do this?

If you were thinking `ARRAYFORMULA`

and `SUBSTITUTE`

again – well done! You’re acquiring a new skill today.

Here’s our concluding formula:

`=ARRAYFORMULA(SUBSTITUTE(TRANSPOSE(SPLIT(JOIN(" ",QUERY(ARRAYFORMULA(SUBSTITUTE(A1:B3," ","~")),,ROWS(A:A)))," ")),"~"," "))`

## Conclusion

So there you have it!

Within this article you’ve been able to learn the following function skills when using Google Sheets:

- What the third parameter of the
`QUERY`

formula does. - How we can modify each cell within a range by using
`ARRAYFORMULA`

– specifically using the`SUBSTITUTE`

formula. - How to handle different data sets with the
`QUERY`

function, especially if they contain space characters. - How to
`JOIN`

our`QUERY`

data to form a single cell of data (careful of the 50,000 character limit). - How to
`SPLIT`

our data set back into cells. - How to
`TRANSPOSE`

our data set back into columns.

Well done if you’ve been able to follow along and understand these complex topics.